Version 14 (modified by jstolarek, 3 years ago) (diff) |
---|
Implementing primitive Bool#
This page gathers the notes about implementing new primitive logical operations and thus resolving ticket #6135.
The problem
Consider following fragment of code:
case (x <# 0#) || (x >=# width) || (y <# 0#) || (y >=# height) of True -> E1 False -> E2
This kind of code is common in image processing (and array programming in general) where one needs to check whether the (x,y) coordinates are within the image. Primitive comparison operators <# and >=# have type Int# -> Int# -> Bool. Logical OR operator (||) is defined as:
(||) :: Bool -> Bool -> Bool True || _ = True False || x = x
in GHC.Classes (ghc-prim library) which is equivalent of:
(||) x y = case x of True -> True False -> y
During the compilation process (assuming the optimizations are turned on) the definition of (||) gets inlined and then case-of-case transform is performed successively. This results in following Core (cleaned up for clarity):
case <# x 0 of _ { False -> case >=# x width of _ { False -> case <# y 0 of _ { False -> case >=# y height of _ { False -> E2 True -> E1 }; True -> E1 }; True -> E1 }; True -> E1 };
and in following assembler code:
.Lc1rf: testq %r14,%r14 jl .Lc1rk cmpq %rdi,%r14 jge .Lc1rp testq %rsi,%rsi jl .Lc1ru cmpq %r8,%rsi jge .Lc1rz movl $Main_g2_closure+1,%ebx jmp *0(%rbp) .Lc1rk: movl $Main_g1_closure+1,%ebx jmp *0(%rbp) .Lc1rp: movl $Main_g1_closure+1,%ebx jmp *0(%rbp) .Lc1ru: movl $Main_g1_closure+1,%ebx jmp *0(%rbp) .Lc1rz: movl $Main_g1_closure+1,%ebx jmp *0(%rbp)
There are five possible branches to take, although four of them have the same result. This is caused by code duplication introduced by case-of-case transform (see this blog post for a step by step derivation). According to Ben Lippmeier, who submitted the original bug report, mis-predicted branches are bad in object code because they stall the pipeline.
Solution
The idea behind the solution is to modify comparison primops to return unboxed unlifted Int# instead of Bool (which is lifted and thus is returned as a thunk that needs to be evaluated). This will be implemented in the following way:
- existing comparison primops will have their return type changed to Int#. Also, their names will be changed. Operators will have $ added before #, others will have I added before the # (this is a mnemonic denoting that this primop returns and Int#). Examples:
>=$# :: Int# -> Int# -> Int# /=$## :: Double# -> Double# -> Int# gtCharI# :: Char# -> Char# -> Int# eqWordI# :: Word# -> Word# -> Int# ltFloatI# :: Float# -> Float# -> Int# leAddrI# :: Addr# -> Addr# -> Int#
- a new module GHC.PrimWrappers will be added to ghc-prim library. This module will contain wrappers for comparison primops. These wrappers will have names identical to removed primops and will return a Bool. Examples:
gtChar# :: Char# -> Char# -> Bool gtChar# a b = tagToEnum# (a `gtCharI#` b) (>=#) :: Int# -> Int# -> Bool (>=#) a b = tagToEnum# (a >=$# b) eqWord# :: Word# -> Word# -> Bool eqWord# a b = tagToEnum# (a `eqWordI#` b) (/=##) :: Double# -> Double# -> Bool (/=##) a b = tagToEnum# (a /=$## b) ltFloat# :: Float# -> Float# -> Bool ltFloat# a b = tagToEnum# (a `ltFloatI#` b) leAddr# :: Addr# -> Addr# -> Bool leAddr# a b = tagToEnum# (a `leAddrI#` b)
Thanks to these wrappers the change will be almost backwards compatible. The only thing primop users will need to change in their existing code to make it work again is adding import of !GHC.PrimWrappers module.
- The following boot libraries require modification in order to work with the new primops: base, ghc-prim and integer-gmp. The only required modifications are imports of the !GHC.PrimWrappers module in modules that use the primops.
Proof of concept
The prototype patch posted on the trac on 13th of March implemented six new prototype comparison primops:
.># :: Int# -> Int# -> Int# .<# :: Int# -> Int# -> Int# .>=# :: Int# -> Int# -> Int# .<=# :: Int# -> Int# -> Int# .==# :: Int# -> Int# -> Int# ./=# :: Int# -> Int# -> Int#
Each of these new primops takes two Int#s that are to be compared. The result is also an Int#: 0# if the relation between the operands does not hold and 1# when it does hold. For example 5# .># 3# returns 1# and 3# .># 3# returns 0#. With the new primops we can rewrite the original expression that motivated the problem:
case (x <# 0#) || (x >=# width) || (y <# 0#) || (y >=# height) of True -> E1 False -> E2
as
case (x .<# 0#) `orI#` (x .>=# width) `orI#` (y .<# 0#) `orI#` (y .>=# height) of True -> E1 False -> E2
(Note: orI# is a bitwise OR operation on operands of type Int#. It was introduced together with andI#, notI# and xor# in #7689). Using the LLVM backend this compiles to:
# BB#0: # %c1nK movq %rsi, %rax orq %r14, %rax shrq $63, %rax cmpq %rdi, %r14 setge %cl movzbl %cl, %ecx orq %rax, %rcx cmpq %r8, %rsi setge %al movzbl %al, %eax orq %rcx, %rax jne .LBB2_1 # BB#3: # %c1ol movq (%rbp), %rax movl $r1m6_closure+1, %ebx jmpq *%rax # TAILCALL .LBB2_1: # %c1nK cmpq $1, %rax jne .LBB2_2 # BB#4: # %c1ov movq (%rbp), %rax movl $r1m7_closure+1, %ebx jmpq *%rax # TAILCALL .LBB2_2: # %c1ob movq r1m5_closure(%rip), %rax movl $r1m5_closure, %ebx jmpq *%rax # TAILCALL
The assembly does not contain comparisons and jumps in the scrutinee of the case expression, but still does jumps for selecting an appropriate branch of the case expression.
Benchmarks for the proposed patch
Below is a benchmark for the proof-of-concept filter function that demonstrates performance gains possible with the new primops:
{-# LANGUAGE BangPatterns, MagicHash #-} module Main ( main ) where import Control.Monad.ST (runST) import Criterion.Config (Config, cfgPerformGC, defaultConfig, ljust) import Criterion.Main import Data.Vector.Unboxed.Mutable (unsafeNew, unsafeSlice, unsafeWrite) import Data.Vector.Unboxed as U (Vector, filter, foldM', fromList, length, unsafeFreeze) import GHC.Exts (Int (I#), (.>=#)) import System.Random (RandomGen, mkStdGen, randoms) import Prelude hiding (filter, length) filterN :: U.Vector Int -> U.Vector Int filterN vec = runST $ do let !size = length vec fVec <- unsafeNew size let put i x = do let !(I# v) = x inc = I# (v .>=# 0#) unsafeWrite fVec i x return $ i + inc fSize <- foldM' put 0 vec unsafeFreeze $ unsafeSlice 0 fSize fVec main :: IO () main = return (mkStdGen 1232134332) >>= defaultMainWith benchConfig (return ()) . benchmarks benchmarks :: RandomGen g => g -> [Benchmark] benchmarks gen = let dataSize = 10 ^ (7 :: Int) inputList = take dataSize . randoms $ gen :: [Int] inputVec = fromList inputList isPositive = (> 0) in [ bgroup "Filter" [ bench "New" $ whnf (filterN) inputVec , bench "Vector" $ whnf (filter isPositive) inputVec ] ] benchConfig :: Config benchConfig = defaultConfig { cfgPerformGC = ljust True }
Compile and run with:
ghc -O2 -fllvm -optlo-O3 Main.hs ./Main -o report.html
Benchmarking shows that filterN function is 60% faster than the filter function based on stream fusion (tested for unboxed vectors containing 10 thousand and 10 million elements).
Attachments (1)
- prim-bool-criterion.png (107.6 KB) - added by jstolarek 3 years ago.
Download all attachments as: .zip