Version 17 (modified by goldfire, 5 years ago) (diff)


Pattern-matching axioms

This page describes an extension to type families that supports overlap.

  • We'll use GHC branch overlapping-tyfams for development work.
  • See also the Discussion Page added May 2012, for comment/suggestions/requests for clarification/alternative solutions, to explore the design space.
  • See also the Coincident Overlap page (added August 2012) for a discussion around the usefulness of allowing certain overlaps when the right-hand sides coincide.
  • See also the Template Haskell page (added December 2012) for a proposal for the Template Haskell changes necessary to support this change.

Status (Jan 12): the groundwork is done, in HEAD; mainly making CoAxiom a more fundamental data type. Not yet started on the details.

Status (Aug 12): A working prototype implementation is in overlapping-tyfams.


One might imagine that it would be a simple matter to have a type-level function

type family Equal a b :: Bool

so that (Equal t1 t2) was True if t1=t2 and False otherwise. But it isn't.

You can't write

type instance Equal a a = True
type instance Equal a b = False

because System FC (rightly) prohibits overlapping family instances.

Expanding this out, you can do it for a fixed collection of types thus:

type instance Equal Int Int = True
type instance Equal Bool Bool = True
type instance Equal Int Bool = False
type instance Equal Bool Int = False

but this obviously gets stupid as you add more types.

Furthermore, this is not what you want. Even if we restrict the equality function to booleans

type family Equal (a :: Bool) (b :: Bool) :: Bool

we can't define instances of Equal so that a constraint like this one

Equal a a ~ True

is satisfiable---the type instances only reduce if a is known to True or False. GHC doesn't reason by cases. (Nor should it, |Any| also inhabits |Bool|. No kinds really are closed.)

The only way to work with this sort of reasoning is to use Overlapping Instances, as suggested in the HList paper.

What to do about it

So the deficiency is in System FC, and it seems fundamental. We've been working on an extension to System FC, with a corresponding source-language extension, that does allow overlapping type families, with care. Here's the idea of the surface-level extension, but see the attached PDF for the details on the FC extension. (The attached PDF uses the FC formalism fully presented here.)

All of the following is currently implemented in the overlapping-tyfams branch.

  • A type instance declaration can define multiple equations, not just one:
    type instance where
      Equal a a = True
      Equal a b = False
  • Patterns within a single type instance declaration (henceforth "group") may overlap, and are matched top to bottom.
  • A single type family may, as now, have multiple type instance declarations:
    type family F a :: *
    type instance where
      F [Int] = Int
      F [a]   = Bool
    type instance where
      F (Int,b) = Char
      F (a,b)   = [Char]
  • The groups for F may not overlap. That is, there must be no type t such that (F t) matches both groups. This rule explicitly excludes overlaps among group members, even if the right-hand sides coincide (but see the Coincident Overlap page for discussion).
  • The groups do not need to be exhaustive. If there is no equation that matches, the call is stuck. (This is exactly as at present.)
  • An error is issued when a later equation is matched by a former, making the later one inaccessible.
    type instance where
      F (a,b)   = [Char]
      F (Int,b) = Char
    Here the second equation can never match.

For closed kinds (and maybe for open ones, but I can't unravel it), it seems possible to write a set of equations that will catch all possible cases but doesn't match the general case. This situation is currently (Aug 2012) undetected, because I (Richard, eir at am unconvinced I have a strong enough handle on the details. For example, what about Any?

  • The equations do not need to share a common pattern:
    type instance where
      F Int = Char
      F (a,b) = Int
  • When matching a use of a type family against a group, special care must be taken not to accidentally introduce incoherence. Consider the following example:
    type instance where
      F Int = Bool
      F a   = Char
    and we try to simplify the type F b. The naive implementation would just simplify F b to Char, but this would be wrong. The problem is that b may later be unified with Int, meaning F b should simplify to Bool, not Char. So, the correct behavior is not to simplify F b at all; it is stuck for now. Note that the second equation above is not useless: we will still simplify, say, F Double to Char.

More formally, we only match a type against an equation in an instance group when no previous equation can unify against the type.

  • Taking the above point into account, we will still simplify a type family use when those previous unifying equations produce coincident right-hand sides. For example,
    type instance where
      And True x = x
      And y True = y
    and we want to simplify And z True. The first equation does not match. The second one does, with the substitution y -> z! But then, the first one unifies with the substitution x -> True, z -> True. Applying both substitutions to the second right-hand side (y) and just the second substitution to the first (x}), we see that both right-hand sides reduce to True in the problematic case (which is when z will unify with True at some later point). So, we can indeed reduce And z True to z as desired. This is indeed a little fiddly, but it seems useful enough to include.
  • Optional extra (not yet (August 2012) implemented): It would make sense to allow the type family and type instance declaration to be combined into one, in cases where all the equations can be given at the definition site. For example:
    type family Equal a b :: Bool where
      Equal a a = True
      Equal a b = False
    type family Member (a :: k) (b :: '[k]) :: Bool where
      Member a '[] = False                      -- (not overlapping)
      Member a ( a ': bs ) = True
      Member a ( b ': bs ) = Member a bs

Questions of syntax

What should the "header" look like?

(A)      type instance where      -- Use "where"
            F (a,b)   = [Char]
            F (Int,b) = Char
            F Bool    = Char

(B)      type instance of         -- Use "of" (yuk)
            F (a,b)   = [Char]
            F (Int,b) = Char
            F Bool    = Char

(C)      type instance F where     -- Redundantly mention F in the header
            F (a,b)   = [Char]
            F (Int,b) = Char
            F Bool    = Char

We need one of the existing "layout herald" keywords (of, let, where) to smoothly support the nested block of equations. It's not clear whether or not it is useful to mention the name of the function in the header.


The implementation described above does not address all desired use cases. In particular, it does not work with associated types at all. (Using something like type where in a class definition will be a parse error.) There's no set reason the approach couldn't be expanded to work with associated types, but it is not done yet. In particular, the FC extension will handle intra-module overlapping associated types without a change.

It seems that inter-module overlapping non-coincident associated types are a Bad Idea, but please add comments if you think otherwise and/or need such a feature. Why is it a Bad Idea? Because it would violate type safety: different modules with different visible instances could simplify type family applications to different ground types, perhaps concluding True ~ False, and the world would immediately cease to exist.

This last point doesn't apply to overlapping type class instances because type class instance selection compiles to a term-level thing (a dictionary). Using two different dictionaries for the same constraint in different places may be silly, but it won't end the world.

Attachments (1)

  • axioms.pdf (212.0 KB) - added by goldfire 5 years ago. Description of FC extension to support overlapping type family instances

Download all attachments as: .zip