Version 4 (modified by pigworker, 7 years ago) (diff)

remark about transformers

A matter of much consternation, here is a proposal to allow type class declarations to include default instance declarations for their superclasses. It's based on Jón Fairbairn's proposal, but it has a more explicit 'off switch' and the policy on corner-cases is rejection. Credit is due also to the class system extension proposal and its ancestors, in particular, John Meacham's class alias proposal.

We may distinguish two uses of superclasses (not necessarily exclusive). A class can widen its superclass, extending its interface with new functionality (e.g., adding an inverse to a monoid to obtain a group -- inversion seldom provides an implementation of composition). A class can deepen its superclass (e.g., an implementation of Traversable f delivers at least enough technology to deliver Foldable f and Functor f). This proposal concerns the latter phenomenon, which is currently such a nuisance that Functor and Applicative are not superclasses of Monad. Nobody wants to be forced to write Functor and Applicative instances, just to access the Monad interface. Moreover, any proposal to refine the library by splitting a type class into depth-layers is (rightly!) greeted with howls of protest as an absence of superclass instances gives rise to breakage of the existing codebase.

Concretely, the proposal is to

  • allow class declarations to embed instance declarations for some, none, or all of their given superclass constraints, provided all such instances have distinct classes. We say that superclasses with default implementations are intrinsic superclasses. Yes to
        class Functor f => Applicative f where
          return :: x -> f x
          (<*>) :: f (s -> t) -> f s -> f t
          (>>) :: f s -> f t -> f t
          fs >> ft = return (flip const) <*> fs <*> ft
          instance Functor f where
            fmap = (<*>) . return
        class Applicative f => Monad f where
          (>>=) :: f a -> (a -> f b) -> f b
          instance Applicative f where
            ff <*> fs = ff >>= \ f -> fs >>= \ s -> return (f s)

but no to

    class (Tweedle dum, Tweedle dee) => Rum dum dee where
      instance Tweedle dum where ...
      instance Tweedle dee where ...
  • let subclass instance declarations spawn intrinsic superclass instances by default -- if we have
        class Bar t[x] => Foo x where
          instance Bar t[x] where ...
        instance C => Foo s where ...

we automatically acquire a default superclass instance

    instance C => Bar t[s] where ...
  • let subclass instance declarations provide and override the methods of their intrinsic superclasses with no extra delimitation; so we may write
        instance Monad Blah where
          return x = ...
          ba >>= bf = ...

and acquire the Monad instance, along with fully formed Applicative and Functor instances. By requiring that intrinsic superclasses be class-distinct, we ensure that the distribution of methods to spawned instances is unambiguous. Moreover, local overrides beat the default. If we write

    instance Monad Blah where
      return x = ...
      ba >>= bf = ...
      bs >> bt = ...

we override the default (>>) but keep the (<*>) in the spawned Applicative instance.

  • to inhibit default-spawning with the syntax
        instance Sub x where
          hiding instance Super

which acts to prevent the generation of instances for Super and all of Super's intrinsic superclasses in turn. We need this, so that we can write

    instance Monad Blah where
      return x = ...
      ba >>= bf = ...
      hiding instance Functor

    instance Traversable Blah where
      traverse f bx = ...  -- inducing a default implementation of Functor

or indeed to turn off all the defaults and provide a standalone Functor instance.

  • while we're about it, to allow multi-headed instance declarations for class-disjoint conjunctions, with the same semantics for constraint duplication and method distribution as for the defaults, so
        instance S => (C x, C' x) where
          methodOfC  = ...
          methodOfC' = ...

is short for

    instance S => C x where
      methodOfC  = ...
    instance S => C' x where
      methodOfC' = ...

This proposal fits handily with the kind Fact proposal, which allows multiple constraints to be abbreviated by ordinary type synonyms.

Default superclass instances are implemented in the Strathclyde Haskell Enhancement. They should enable some tidying of the library, with relatively few tears. Moreover, they should allow us to deepen type class hierarchies as we learn. Retaining backward compatibility in relative silence is the motivation for an opt-in default.

Oleg and others note: just because you can make default instances, they are not always the instances you want. A key example is

    instance Monad m => Monad (ReaderT r m) where ...

which would give us by default

    instance Monad m => Applicative (ReaderT r m) where ...

thus preventing us adding the more general

    instance Applicative m => Applicative (ReaderT r m) where ...

The opt-out is crucial, but relatively cheap.